

Dong Jung Kim M.D.

Department of Thoracic and Cardiovascular Surgery

Introduction

Fluid management

Contents

- Acute kidney injury
 - CRRT
- Hyperkalemia
- Metabolic acidosis

Fluid

Postoperative volume status

- Hemodilution on CPB
 - total body Na⁺ and water overload
 - ↑ body weight by about 5%
- Cardiac filling pressures
 - do not reflect state of volume overload
 - capillary leak from systemic inflammatory response
 - ↓ plasma osmotic pressure
 - impaired myocardial relaxation (diastolic dysfunction)
 - from ischemia/reperfusion after cardioplegic arrest
 - vasodilation

Fluid

Postoperative fluid management

- Low filling pressures with hypovolemia
 - despite presence of body water overload
 - additional fluid administration
 - to maintain satisfactory hemodynamics
- High filling pressures with hypovolemia
 - especially in patients with diastolic dysfunction
 - additional fluid administration
 - may be necessary in that situation as well

Fluid

Routine fluid management

- Fluid must invariably be administered
 - to maintain intravascular volume and hemodynamics
 - at the expense of expansion of interstitial space
- 1st 4~6 hours after surgery
 - cardiac output is often depressed
 - hemodynamics is dependent on both preload and inotropic support

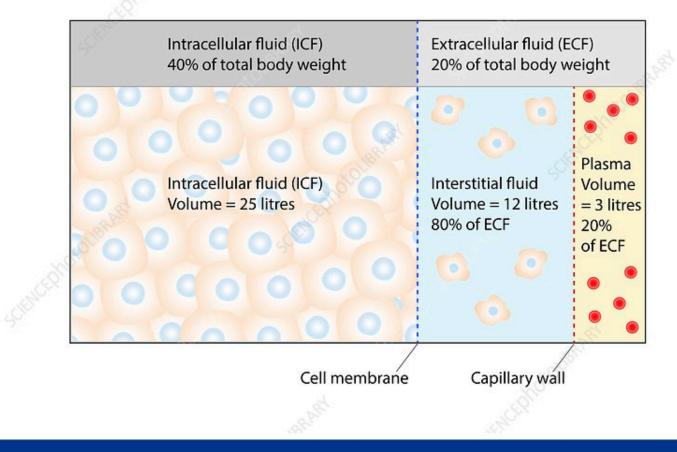
Fluid

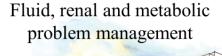
Types of fluid

- Any fluid will expand interstitial space
 - during a period of altered capillary membrane integrity
- Preferable fluid
 - more effectively expand intravascular space
 - minimize expansion of interstitial space

Fluid

Body water distribution

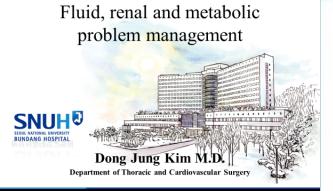

- 60% of body weight (BW) is water
 - $\frac{2}{3}$ is in the intracellular space (ICF, 40% of BW)
 - $\frac{1}{3}$ is in the extracellular space (ECF, 20% of BW)
 - 3/4 is in the interstitial space (15% of BW)
 - so-called "third space"
 - 1/4 constitutes the intravascular volume (5% of BW)
 - 1/12 of total body water (TBW)



Fluid

Body water distribution

Total body water: volume 40 litres: 60% of total body weight



Fluid

Crystalloid

- Infusion of 1L of 5% DW
 - dextrose is utilized, water is distributed into TBW
 - intravascular volume (1/12 of TBW) expands 83mL
- Infusion of 1L of half saline
 - NS $\frac{1}{2}$ + water $\frac{1}{2}$
 - intravascular volume $(500 \times 1/4 + 500 \times 1/12)$ expands 167mL
- Infusion of 1L of 0.9% normal saline
 - distributed into ECF
 - intravascular volume (1/4 of ECF) expands 250 mL
 - 25% is retained in intravascular compartment after 1 hour

Fluid

Colloid

- Infusion of 1L of 6% hetastarch
 - intravascular volume expands by 1123mL
 - more long-lasting effects than crystalloid
- Infusion of 5% albumin
 - expand plasma volume five times (vs NS)
- Infusion of of 20% albumin
 - 100ml, in patient with 4g/dl of serum albumin level
 - 20% is diluted to 4% (5×)
 - intravascular volume (100×5) expands by 500cc
 - similar effect with infusion of 2L of NS

Fluid

Types of fluid

- Blood and colloids
 - superior to hypotonic or even isotonic crystalloid solutions in expanding intravascular volume

- Rapid infusion of crystalloid
 - transiently beneficial in increasing intravascular volume acutely
 - d/t rapid redistribution into interstitial space

Fluid

Albumin (5%)

- Excellent volume expander
 - approximately 200ml retained per 250ml bottle administered
 - leak into interstitial space d/t capillary leak
- Dilutional effects on clotting parameters
 - preserve coagulation better than 1st generation HES
- Protective effects on kidney
 - O₂ free-radical scavenging & anti-inflammatory properties
- Half-life : 16 hours
 - leaves bloodstream at rate of about 5~8 g/h

Fluid

Hydroxyethyl starch (HES)

- Nonprotein colloid volume expanders
 - characterized by molecular weight (MW) in kilodaltons (kDa) and molar substitution (MS)
- 1st generation HES (high MW solutions)
 - Hespan (6% hetastarch in saline)
 - Hextend (6% hetastarch in balanced electrolyte solution)
 - >600 kDa and 0.75 MS
 - excellent volume expansion
 - decreases gradually over ensuing 24~36 hours
 - retained in the intravascular space better than 5% albumin
 - in conditions of capillary endothelial leakage

Hydroxyethyl starch (HES)

- Concerns about use of HES
 - high MW compounds
 - cause renal dysfunction and coagulopathy
 - Iow MW HES solutions
 - cause less of coagulopathy than 1st generation HES
 - associated with postoperative bleeding

Fluid

Hydroxyethyl starch (HES)

Low MW compounds

- pentastarch (6% HES 200/0.5 [Pentaspan])
- tetrastarch (6% HES 130/0.4 [Voluven])
- shorter duration, more rapid elimination
 - at least 6 hours for tetrastarch
- recommended daily doses : limited to 28~50 mL/kg
- less risk of renal dysfunction and coagulopathy
- increase in tissue oxygenation
 - demonstrated with HES 130/0.4 compared with lactated Ringer's
 - perhaps because of better microcirculatory flow

Fluid

Routine fluid management

- Early extubation
 - helpful in reducing fluid requirements
 - ↓ adverse effects of positive-pressure ventilation on venous return & ventricular function

Acute kidney injury

Postoperative AKI

- Oliguria (<0.5 mL/kg/hr)
 - commonly in the 1st 12 hours after surgery
 - responds to volume infusion or low-dose inotropes
 - acute renal insult
 - by prolonged hypotension or low cardiac output state

SNUH SEOUL NATIONAL UNIVERSITY BUNDANG HOSPITAL

Fluid, renal and metabolic problem management

Acute kidney injury

T 1	•	C	1 •	•
HV a	luation	O T	\mathbf{O}	$ \mathcal{O} \mathbf{r} $
				5m

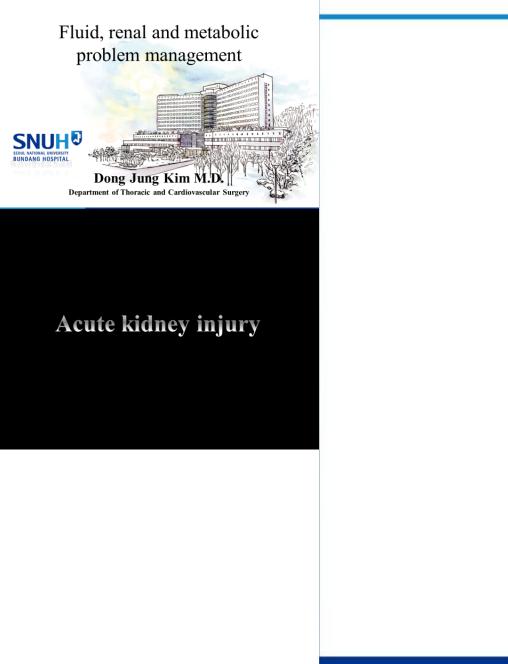
	Prerenal	Renal	
BUN/Cr	>20:1	<10:1	
U/P creatinine	>40	<20	
U _{osm}	>500	<400	
U/P osmolality	>1.3	<1.1	
Urine specific gravity	>1.016	<1.010	
U _{Na} (mEq/L)	<20	>40	
FE _{Na}	<1%	>2%	
Urinary sediment	Hyaline casts	Tubular epithelial cells Granular casts	

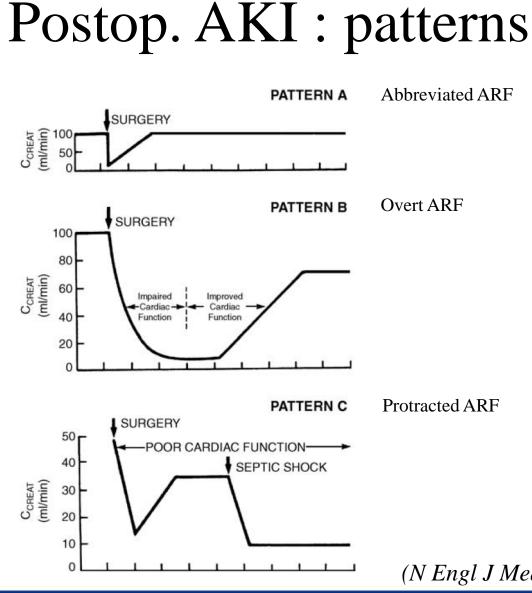
(Ann Intern Med 2002;137:744–52)

Acute kidney injury

Fractional excretion of sodium (FE_{Na})

- $FE_{Na} < 1\%$
 - retained tubular function with absorption of Na⁺ & water
 - prerenal problem
 - except in cases of contrast nephrotoxicity & hepatorenal syndrome
- FE_{Na} >2%
 - usually caused by AKI
 - when prerenal process is superimposed on CKD
 - kidneys at baseline cannot conserve water & sodium appropriately


(N Engl J Med 1986;314:97–105)


Fluid, renal and metabolic problem management

Acute kidney injury

	Scr/GFR Criteria	Urine Output	Overall Incidence
Risk	Increase in Scr × 1.5 or	<0.5 mL/kg/h $ imes$ 6 h	20-25%
	Decrease in GFR >25%		
Injury	Increase in Scr × 2 or	<0.5 ml/kg/h $ imes$ 12 h	5-7%
	Decrease in GFR >50%		
Failure	Increase in Scr × 3 or	<0.3 ml/kg/h $ imes$ 24 h	1-3%
	Decrease in GFR >75% or		
	Scr $>$ 350 μ mol/L (>4 mg/dL) or		
	Acute Scr rise >44 µmol/L (>0.5 mg/dL)		
Loss	Persistent acute renal failure with complete loss of kidney function >4 weeks		
ESKD	End-stage kidney disease >3 months		

(N Engl J Med 1986;314:97–105)

Acute kidney injury

Postop. AKI : patterns

Abbreviated ARF

- transient intraop. insult occurs that causes renal ischemia
- Scr peaks on 4th postoperative day and returns to normal
- Overt ARF
 - acute insult followed by prolonged period of cardiac dysfunction
 - Scr rises to higher level and gradually returns to baseline
 - over 1~2 weeks once hemodynamics improve

Protracted ARF

- initial insult followed by a period of cardiac dysfunction
- another insult from sepsis or a period of hypoperfusion/hypotension
- progressive, often irreversible rise in Scr

Acute kidney injury

- Once AKI is established
 - very little can be done to promote recovery of renal function
 - except to prevent additional insults
- Early aggressive intervention
 - patients with oliguria and early evidence of AKI
 - to prevent progressive tubular injury and worsening of renal function

Acute kidney injury

- Increase renal blood flow
 - to reduce tubular obstruction
 - to impact on enhancing tubular epithelial cell proliferation and recovery of function

- Maintain urine output
 - to reduce tissue edema
 - to treat electrolyte or metabolic problems

Acute kidney injury

- Patency of Foley catheter
 - hematuria, clamping
 - irrigation with saline, if necessary
 - consideration of changing catheter empirically
- Bladder scan
 - indicate whether oliguria is real or spurious
 - if Foley catheter has been removed
 - significant post-void residual
 - provide evidence of a post-obstructive uropathy

Acute kidney injury

- Optimize cardiac function
 - treat hypovolemia (optimize preload)
 - control arrhythmias
 - improve contractility
 - reduce elevated afterload
 - allow BP to drift up to 150mmHg

Acute kidney injury

AKI : management

Optimize preload

- hemodynamic monitoring with Swan-Ganz catheter
- echocardiography
 - ventricular failure VS tamponade or hypervolemia
- assessment of fluid balance & intravascular volume
 - fluid responsiveness, CVP monitoring, strict I & O's
- avoid excessive fluid administration
 - noncardiogenic pulmonary edema
 - capillary leak
 - sepsis, long duration of CPB, persistent low cardiac output state
 - ↓ oncotic pressure
 - hemodilution, poor nutritional condition

Acute kidney injury

AKI : management

• Optimize HR & treat arrhythmias

- increase rate with pacing to augment cardiac output
 - even though patient have satisfactory HR
- beneficial in improving renal perfusion & GFR
- Improve contractility with inotropes
 - if low cardiac output state is present
- IABP
 - low cardiac output despite use of multiple inotropes
 - increase in urine output

Acute kidney injury

AKI : management

Reduce afterload with vasodilators

- milrinone or dobutamine
 - inotropic drugs with vasodilator properties
- avoid drugs that can cause renal vasoconstriction
 - ACE inhibitors & ARBs
- avoid aggressive in the reduction of systemic BP
 - in patients with preexisting hypertension & CKD
 - usually require higher sBP (130~150mmHg) to maintain renal perfusion
 - α-agent (norepinephrine)
 - may be necessary to maintain systemic BP
 - it will also provide some inotropic support

Acute kidney injury

- Optimize hemodynamics
 - augmentation of cardiac output
 - to prevent additional insult that cause hypoperfusion
 - prevention of protracted ARF
 - hypovolemia (often GI bleeding)
 - low cardiac output states (tamponade)
 - arrhythmia (rapid atrial fibrillation, VT)
 - antihypertensive medications
 - sepsis

Acute kidney injury

AKI : management

Diuretics

- oliguria despite optimization of hemodynamics
- Controversy over loop diuretics
 - con
 - No direct effect on renal functional recovery or natural history of AKI
 - may increase operative mortality and delay recovery of renal function
 - pro
 - may hasten decline in Scr and possibly shorten duration of RRT
 - improve urine output and can convert oliguric to non-oliguric RF
 - minimize adverse impact of fluid retention on pulmonary function

Acute kidney injury

AKI : management

Diuretic-responsive RF

- >400 mL/day, the most common form of AKI
- preexisting renal dysfunction or risk factors
 - occasionally without any precipitating factors
- usually reflects less renal damage
- associated with a mortality rate of about 5~10%
 - Non-oliguric RF : mortality rate approaches up to 50%
- earlier decrease in Scr
 - contributing to improvement in short- and long-term survival

Acute kidney injury

AKI : management

Furosemide

- incremental doses starting at 10 mg IV
- 100 mg IV over 20~30 min to minimize ototoxicity
- increase up to 200 mg IV
 - if urine output fails to increase within few hours
 - daily cumulative dose to 1 g
- continuous infusion
 - the best means of maintaining adequate urine output
 - loading dose of 40~100 mg and initiate infusion of 10~20 mg/hr
 - re-bolus before increase in the infusion rate

Acute kidney injury

AKI : management

Mannitol

- osmotic diuretic
 - frequently used during surgery
 - increase serum osmolality during hemodilution to minimize tissue edema
- improves urine output
 - improves renal tubular flow, reduces tubular cell swelling
- avoided in the postoperative period
 - significant increase in serum osmolality
 - can cause renal vasoconstriction and induce renal failure

Acute kidney injury

AKI : management

- Renal-dose dopamine
 - 2~3 µg/kg/min
 - no effect on duration of AKI, need for dialysis, survival
 - comparisons with dobutamine
 - dopamine increased urine output without improving Ccr, whereas dobutamine did just the opposite

(Crit Care Med 1994;22:1919–25)

 dopamine produced diuresis and improved Ccr unrelated to any hemodynamic effects, whereas dobutamine had no effect

(Crit Care Med 2000;28:921-8)

Acute kidney injury

- Renal dose dopamine + furosemide
 - renal vasodilation and improved RBF
 - produced by dopamine improve delivery of furosemide
- Mannitol + furosemide + renal dose dopamine
 - start within 1st 6 hours of oliguria
 - significant diuresis
 - early restoration of renal function

Acute kidney injury

AKI : management

- Limit fluid to insensible losses
- Readjust drug doses
 - discontinue all potentially nephrotoxic drugs
 - ACE inhibitors, ARBs, NSAIDs, nephrotoxic antibiotics
 - avoid any diagnostic studies requiring IV contrast
- Avoid potassium supplements
- Consider early renal replacement therapy

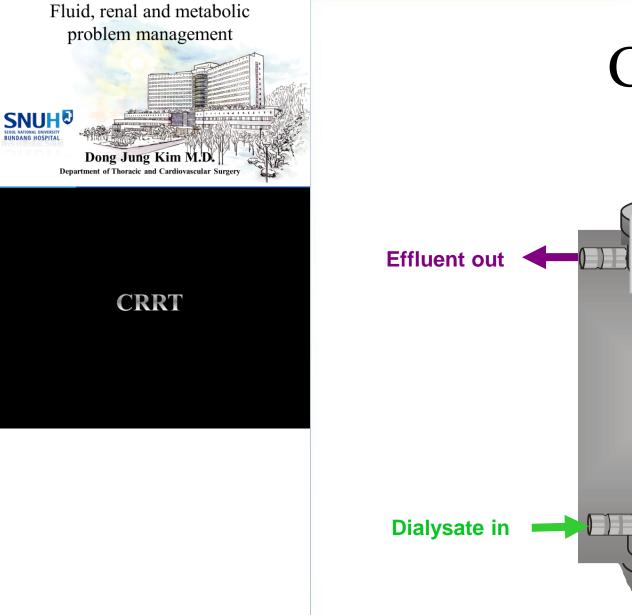
CRRT

Renal Replacement Therapy

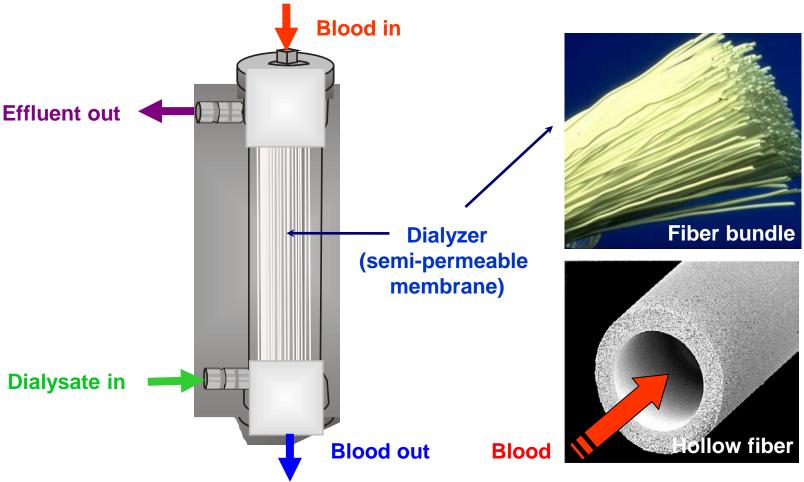
Indications

- volume overload, hyperkalemia, and metabolic acidosis
- signs of uremia
 - such as a change in mental status
- Early and aggressive dialysis
 - before patient develops signs and symptoms of RF
 - before marked elevation in Scr occurs
 - marked oliguria in a patient with significant fluid overload
 - delay in initiating RRT may lead to respiratory compromise and prolonged ventilation
 - might improve outcomes

CRRT


Renal Replacement Therapy

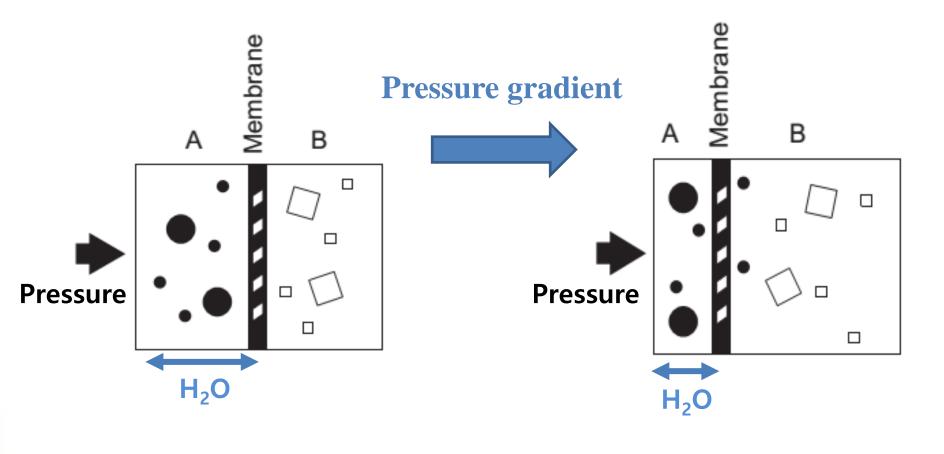
CRRT


If the Patient Has:	HD	SCUF	CVVH	CVVHD	CVVHDF
Unstable hemodynamics	_	+ + +	+ + +	+ + +	
Contraindication to heparin	+ +	+	+	+	
Vascular access problems	+ + +	+ + +	+ + +	+ + +	
Volume overload	+ +	+ + +	+ + +	+ + +	
Hyperkalemia	+ + +	0	+ +	+ + +	
Severe uremia	+ + +	0	+	+ +	
Respiratory compromise	+ +	+ + +	+ + +	+ + +	

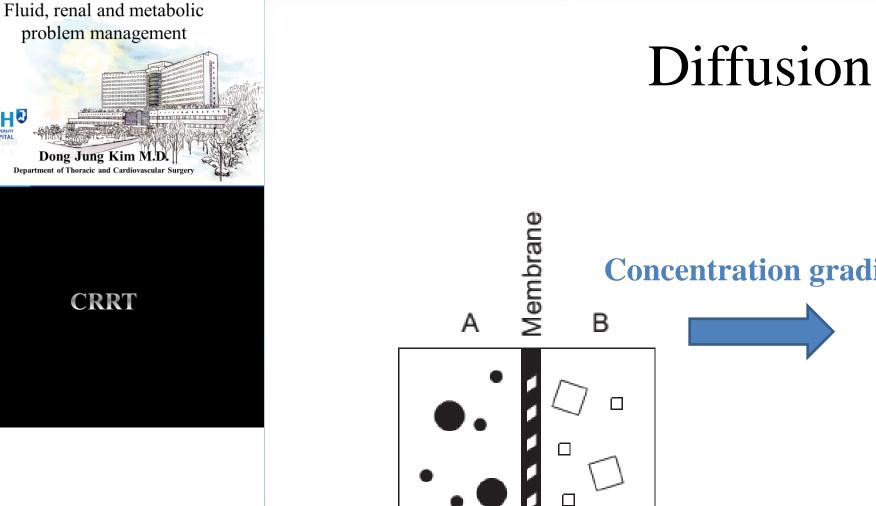
HD, hemodialysis; SCUF, slow continuous ultrafiltration; CVVH, continuous venovenous hemofiltration; CVVHD, continuous venovenous hemofiltration with dialysis.

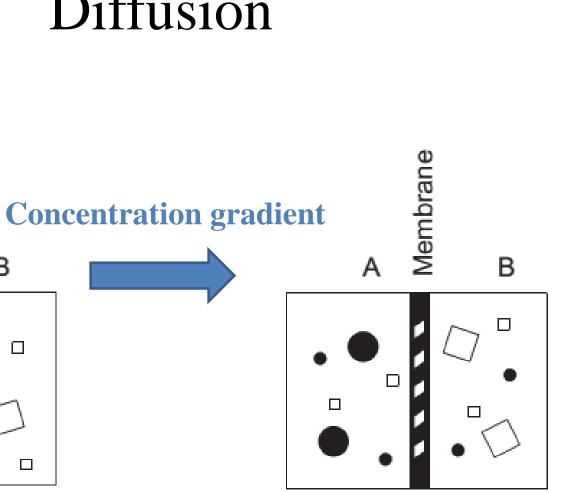
- avoid; 0 minimal effect; + useful; + + better; + + + even better.

Continuous RRT


SNUH SEOUL NATIONAL UNIVERSITY BUNDANG HOSPITAL

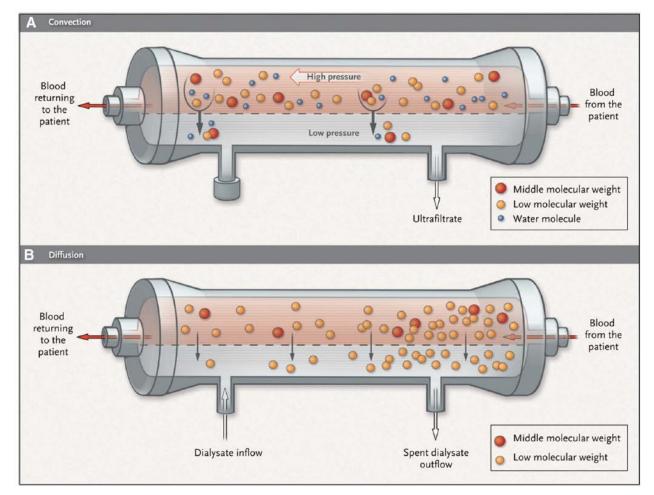
Fluid, renal and metabolic problem management




CRRT

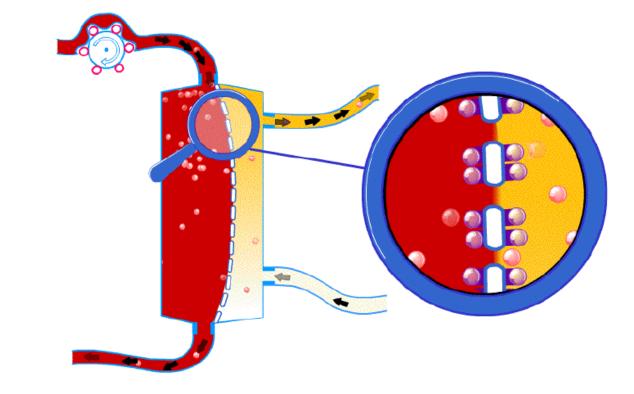
Ultrafiltration and Convection

SNUH SECUL NATIONAL UNIVERSITY BUNDANG HOSPITAL



CRRT

Convection vs Diffusion



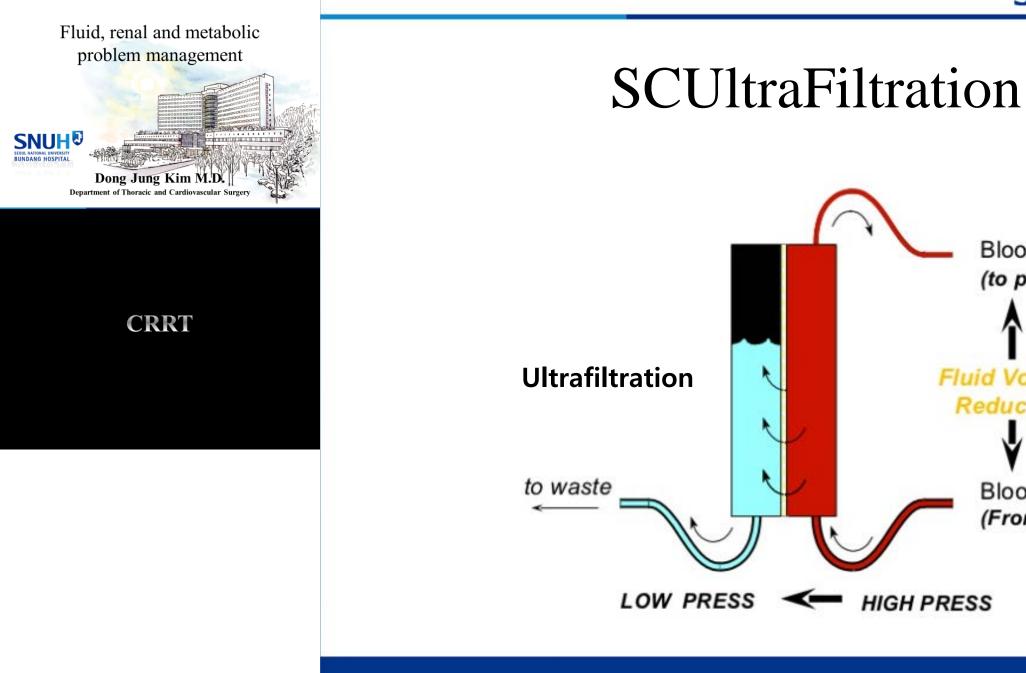
(Can J Anesth/J Can Anesth (2019) 66:593–604)

CRRT

Absorption

Adherence to surface semi-permeable membrane

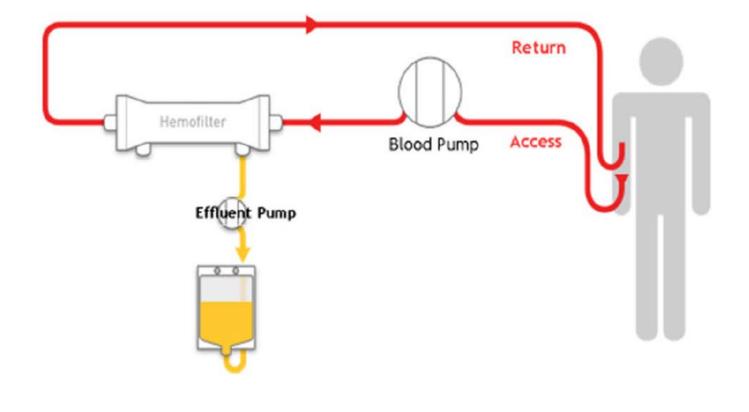
Blood Out

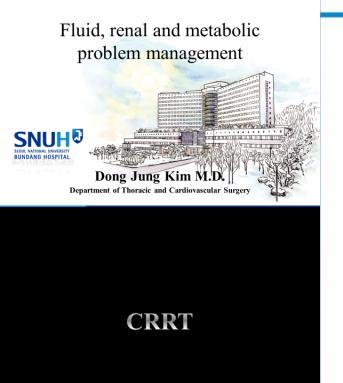

(to patient)

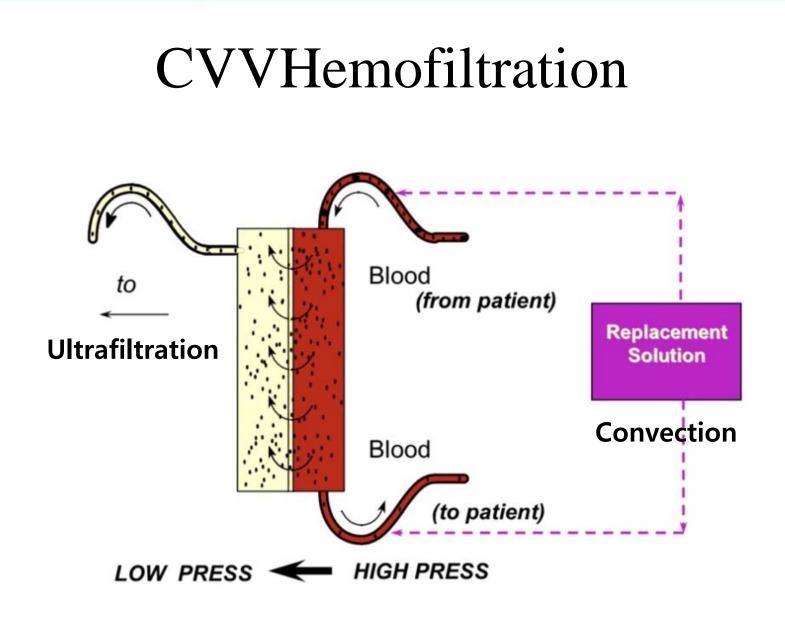
Fluid Volume

Reduction

Blood In

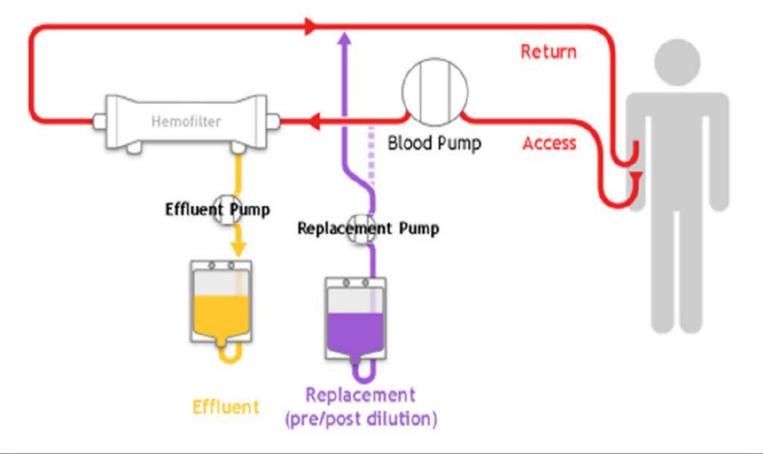

(From patient)

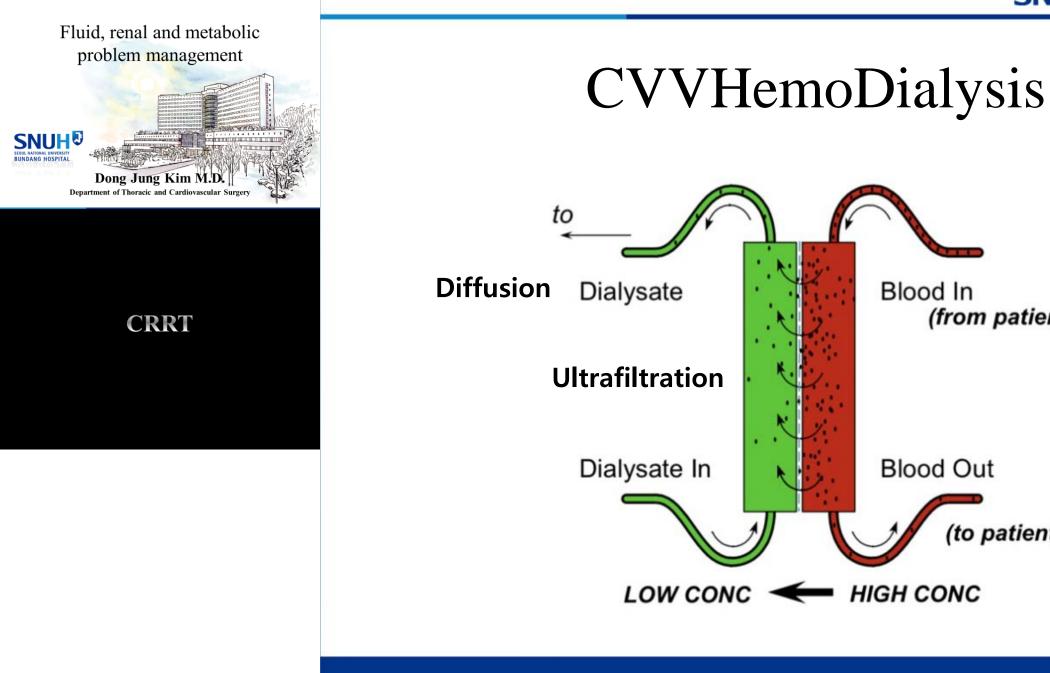




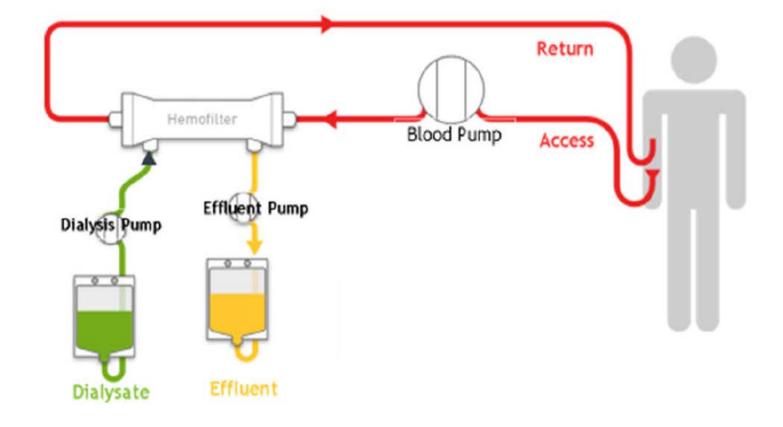
CRRT

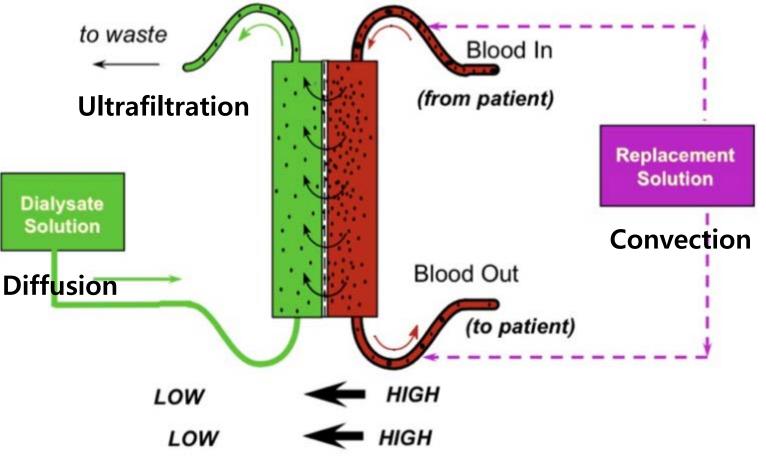
SCUltraFiltration



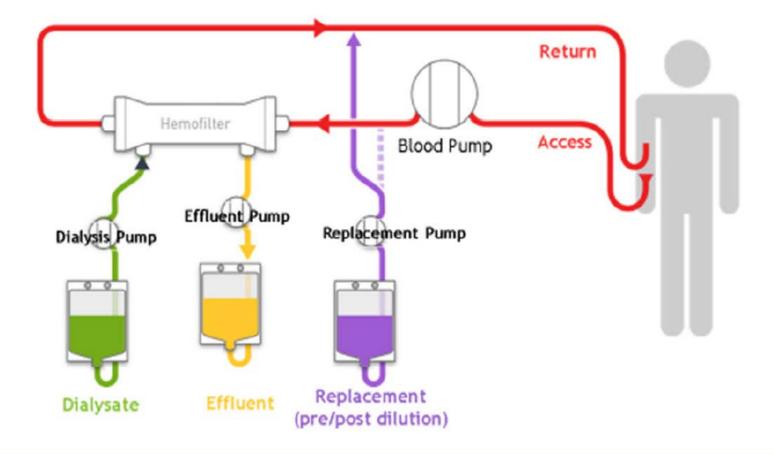

CRRT

(from patient)


(to patient)

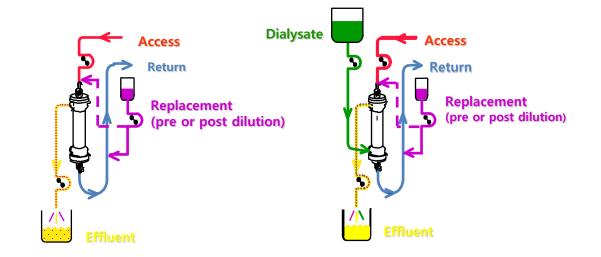

CRRT

CVVHemoDialysis


CVVHemoDiaFiltration

CRRT

CVVHemoDiaFiltration


SNUH SEOUL NATIONAL UNIVERSITY BUNDANG HOSPITAL

Fluid, renal and metabolic problem management

Dong Jung Kim M.D.

CRRT

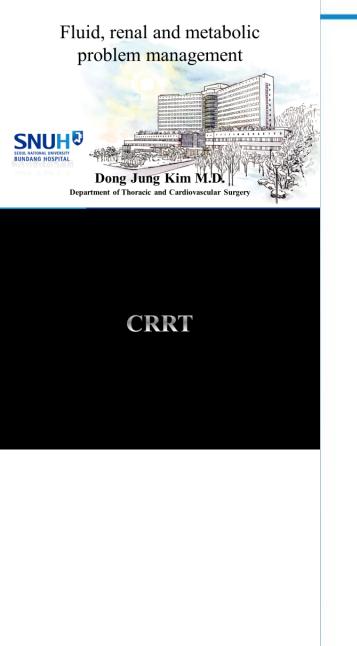
CRRT : mode

=

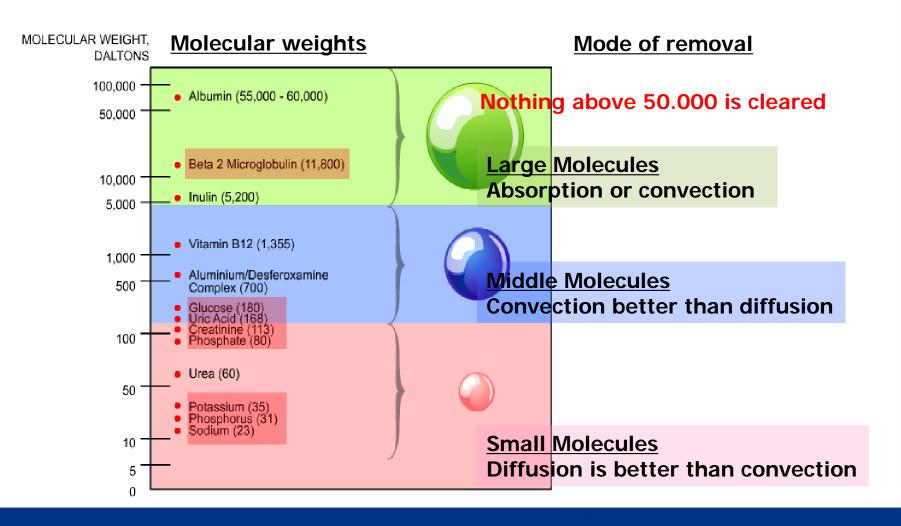
CVVHD

Ultrafiltration

+


Diffusion

- CVVH
 - Ultrafiltration
 - Convection

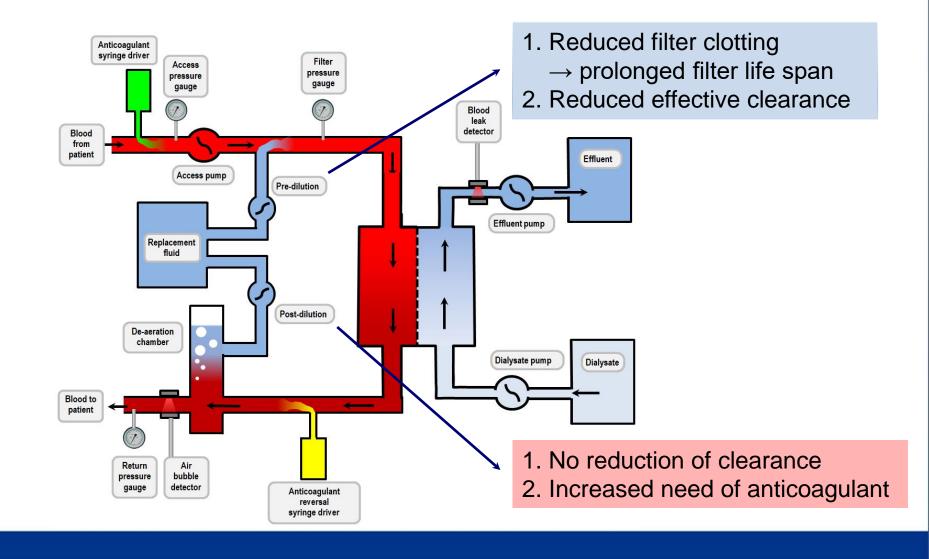

CVVHDF

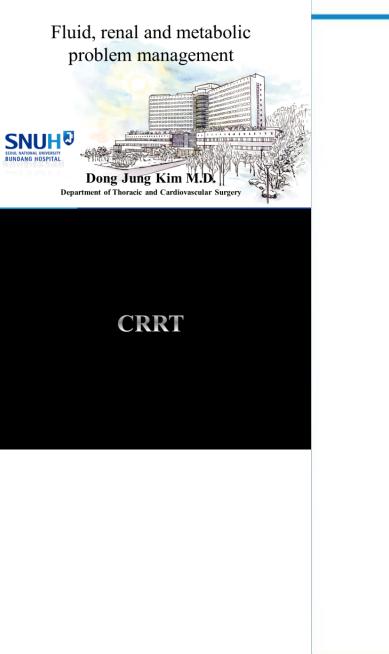
- Ultrafiltration
- Diffusion
- Convection

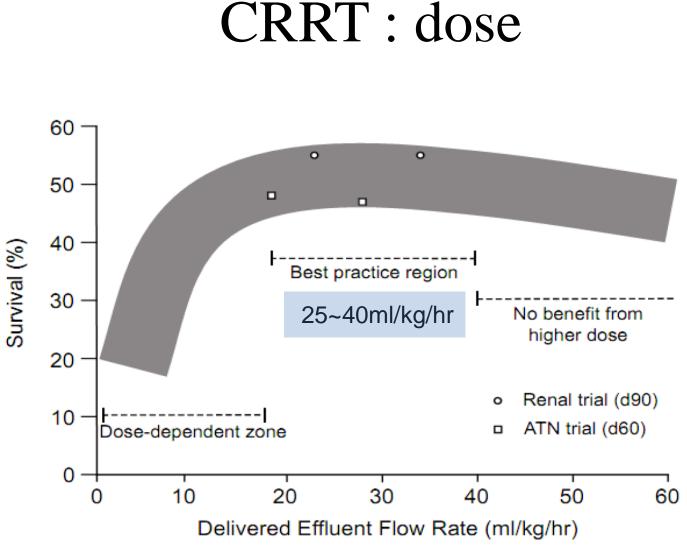
Dialysate Access Return

CRRT : molecules

CRRT


CRRT : order


≪정규≫	CRRT <	
기본	(1) Blood flow : (100) ml/min	처음 1시간 동안은 100mi/hr, 이후 SBP > 100mmHg 이면 150 mi/hr 까지 상향조정.
	(2) Dialysate : (1000) ml/hr	
	(3) Replacement : (1000) ml/hr	pre-dilution (1000) ml/hr
	(4) Removal (100)ml/hr	처음 1시간 동안은 0, 이후 SBP > 90mmHg 이면 상향조 정.
	(5) Anticoagulation	
수액	◆6 Futhan 50mg(SK) 《Nafamostat Mesilate》	4 VL IVF 2 회(수액에 혼합하며 IV infusion) 10 00mL/hr(333gtt)(병동Mix) [♣출혈위험♣]
	◆6 5% DW 100mL/BTL(대한) 《Dextrose》	40 ML IVF 2 회(수액에 혼합하여 IV infusion) 10 00mL/hr(333gtt)(병동Mix)
기본	-4 ml/hr의 속도로 시작	
	-arterial line에서 ACT 6시간 간격으로 시행	(180 ~ 200sec로 유지)
	-V-ACT > 200 : futhan 1 ml/hr씩 감소시킴	
	-V-ACT < 180 : futhan 1 ml/hr씩 증가시킴	
	(6) Lab F/U	

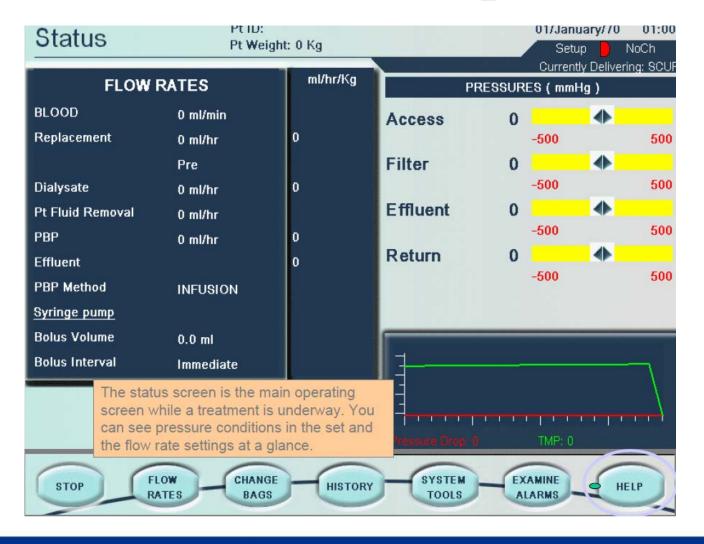


CRRT

CRRT : pre- or post-dilution

(Can J Anesth/J Can Anesth (2019) 66:593–604)

CRRT


CRRT : case – initial setup

- Bwt : 60kg
- Mode : CVVHDF
- Blood flow : 100ml/min
- Effluent flow rate (dose) : 40ml/kg/hr
- Flow rate (dialysate + replacement = 1 : 1)
 - $60 \text{kg} \times 40 \text{ml/kg/hr} = 2400 \text{ml/hr}$
 - dialysate = 1200ml/hr
 - replacement = 1200ml/hr (pre : post = 1 : 1)
 - pre = 600ml/hr, post = 600ml/hr

CRRT

CRRT : setup

Hyperkalemia

Hyperkalemia : Etiology

High-volume, high-potassium cardioplegia solutions

- K⁺ load is usually eliminated promptly by normally functioning kidneys
- problematic in patients with intrinsic renal dysfunction or oliguria from other causes
- Low cardiac output
 - K⁺ levels may rise with alarming and life-threatening rapidity
- Severe tissue ischemia
 - peripheral (from severe peripheral vascular disease or complication of IABP)
 - intra-abdominal (mesenteric ischemia)
 - Hyperkalemia is often the 1st clue to existence of these problems
- Acute and chronic renal insufficiency
- Medications
 - impair K⁺ excretion or increase K⁺ levels
 - ACE inhibitors, potassium-sparing diuretics, NSAIDs, ARBs, β-blockers

Hyperkalemia

Hyperkalemia : acidosis

- Exacerbated by acidosis
 - low cardiac output or ischemic syndromes
- 0.2unit change in pH
 - about 1mEq/L change in serum K⁺ concentration
- Organic acidosis
 - lactic acidosis
 - from tissue breakdown & release of K⁺ from cells
 - ketoacidosis
 - from insulin deficiency & hyperglycemia

Hyperkalemia

Hyperkalemia : manifestations

ECG changes

- d/t depolarization of cardiac cell resting membrane potentials that decreases membrane excitability
- do not always develop in classic progressive fashion
- more related to rate of rise of serum K⁺ than to absolute level
- asystolic arrest
 - when K⁺ rises rapidly to level exceeding 6.5 mEq/L
- peaked T waves, ST depression, smaller R waves, prolonged PR interval, loss of P waves, QRS widening, bradycardia, Vf.
- Failure to respond to pacemaker stimulus

Hyperkalemia

Hyperkalemia : treatment

Principle

- stabilize cell membrane
- shift K⁺ into cells
- increase K⁺ excretion
- identify and remove any potential source of K⁺
 - diet or medications that may increase K⁺ level

Hyperkalemia

Hyperkalemia : treatment

Medication	Dosage	Onset of Action	Duration of Action
Calcium gluconate	10 mL of 10% solution over 2–3 min	Immediate	30 min
Insulin	10 units regular insulin IV in 50 mL of 50% dextrose	15–30 min	2–6 hours
Sodium bicarbonate	1 amp 7.5% (44.6 mEq)	30 min	1–2 hours
Albuterol	10–20 mg by nebulizer	90 min (peak effect)	2–3 hours
Furosemide	20–40 mg IV	15–60 min	4 hours
Sodium polystyrene sulfonate (Kayexalate)	Oral: 30 g in 60–120 mL sorbitol PR: 50 g in retention enema	1–2 hours	4–6 hours

(Lancet 2008;372:1863–5)

Hyperkalemia

Hyperkalemia : treatment

- Optimization of cardiac function
 - stabilization of cell membranes
 - calcium gluconate
 - advanced cardiac toxicity or ECG changes
 - usually when $K^+ > 6.5 \text{ mEq/L}$
 - 10mL of a 10% solution (1 g) IV over 2~3 minutes
 - should be avoided in patients on digoxin

Hyperkalemia

Hyperkalemia : treatment

- Shift K⁺ into cells
 - Regular insulin
 - 10 units in 50mL of 50% dextrose solution
 - Iower K⁺ 0.5~1.5 mEq/L within 15 min and last for several hours
 - 1st choice in case of marked hyperkalemia but no ECG changes
 - Sodium bicarbonate (NaHCO₃)
 - to raise pH to 7.40~7.50 in patients with metabolic acidosis
 - Iower serum K⁺ within 30 min and last for several hours
 - direct effect on hyperkalemia independent of change in pH
 - Na⁺ load may reverse ECG changes of hyperkalemia
 - in hyponatremic patients

Hyperkalemia

Hyperkalemia : treatment

- Enhance K⁺ excretion
 - Furosemide
 - 20–40 mg IV is effective in patients with well-functioning kidneys
 - higher doses may be required in patients with AKI or CKD
 - Sodium polystyrene sulfonate (Kayexalate) enema
 - 50 g in 150 mL of water can be given every 2~4 hours
 - each gram may bind up to 1mEq of K⁺
 - reasonable 1st step in stable postop. patients
 - slowly rising $K^+ > 5.5$ mEq/L despite withdrawal of contributing factors
 - Hemodialysis
 - indicated if above measures fail to lower K⁺ to adequate levels
 - remove up to 50mEq of K⁺ per hour

Metabolic acidosis

Metabolic acidosis : etiology

- Low cardiac output state
 - vasoconstriction from hypothermia or use of vasoconstrictive drugs
 - primary cause in cardiac surgery patient
- Mesenteric ischemia from a low-flow state
 - should be considered when progressive metabolic acidosis occurs
- Sepsis
- Renal failure
- Acute hepatic dysfunction
- Low-dose epinephrine
 - type B lactic acidosis (not associated with tissue hypoxia)

Metabolic acidosis

Metabolic acidosis : effect

Compensatory hyperventilation

- neutralization of acidosis in patients who can breathe spontaneously
 - when 1 mEq/L fall in bicarbonate, PCO₂ is reduced 1.2 torr
- incomplete compensation
 - with mixed respiratory/metabolic acidosis
- Adverse effects of metabolic acidosis
 - usually do not occur until pH is less than 7.20
 - related to metabolic products associated with acidosis
 - rather than absolute level of pH
 - may be reversed by administration of sodium bicarbonate

Metabolic acidosis

Metabolic acidosis : effect

- Cardiovascular effects
 - decreased contractility and cardiac output
 - reduction in hepatic and renal blood flow
 - attenuation of positive inotropic effects of catecholamines
 - venoconstriction and arteriolar dilatation
 - increase filling pressures and decrease systemic pressures
 - increased pulmonary vascular resistance
 - arrhythmias
 - reduction in threshold for ventricular fibrillation
- Respiratory effects
 - dyspnea and tachypnea
 - decreased respiratory muscle strength

Metabolic acidosis

Metabolic acidosis : effect

- Metabolic changes
 - increased metabolic demands
 - hyperglycemia
 - caused by tissue insulin resistance and inhibition of anaerobic glycolysis
 - decreased hepatic update and increased hepatic production of lactate
 - hyperkalemia
 - increased protein catabolism
- Cerebral function
 - inhibition of brain metabolism and cell volume regulation
 - obtundation and coma

Metabolic acidosis

Type A lactic acidosis

- Impaired tissue oxygenation and anaerobic metabolism
 - resulting from circulatory failure
- Self-perpetuating
 - excessive production & suppression of hepatic utilization
- Lactate ion
 - probably more than acidosis
 - contributes to potential cardiovascular dysfunction

Metabolic acidosis

Type A lactic acidosis

- Elevated lactate levels (>3 mmol/L) upon arrival in ICU
 - associated with worse outcome
 - requires prompt attention
 - etiology
 - preexisting renal dysfunction
 - after long pump runs
 - use of intraoperative vasopressors
 - inadequate oxygen delivery during CPB
 - contribute to splanchnic and renal ischemia perpetuated by low cardiac output
- Development several days after surgery
 - raises specter of mesenteric ischemia
 - especially in patients requiring additional days of ICU care

Metabolic acidosis

Type B lactic acidosis

- Occurs in the absence of tissue hypoxia
- Catecholamine-induced metabolic effect
 - especially with low dose epinephrine (<0.04µg/kg/min)
 - hyperglycemia and alterations in fatty acid metabolism
 - pyruvate accumulation and elevated levels of lactic acid
- Acute hepatic failure
 - present with severe lactic acidosis d/t failure to clear lactic acid
- Metformin
 - in patients with renal insufficiency, low cardiac output states, and liver disease, and with use of contrast agent

Metabolic acidosis

Metabolic acidosis : assessment

Measurement of anion gap (AG)

- $Na^+ (Cl^- + HCO_3^-)$
- normal range : 3~13 mEq/L
- high AG metabolic acidosis
 - reflects additional acid production
 - most common after cardiac surgery
 - also be elevated in diabetic ketoacidosis
 - d/t production of hydroxybutyrate or in renal failure from retention of H⁺
- normal or low anion gap
 - represents loss of bicarbonate (diarrhea, renal tubular acidosis)

Metabolic acidosis

Metabolic acidosis : treatment

Principle

- reversal of underlying cause
- oxidation of lactate and regeneration of HCO₃⁻
- Proponents of NaHCO₃ administration
 - significant deleterious effects on cardiovascular function
 - can be corrected with more normal pH

more responsiveness to catecholamines

- occur with more normal pH
- correction of acidosis may be important when etiology of acidosis is unclear or not imminently remediable

Metabolic acidosis

Metabolic acidosis : NaHCO₃

Controversy

- little evidence of hemodynamic improvement
- metabolic derangements
 - fluid overload, hypernatremia, and hyperosmolarity
 - increased affinity of hemoglobin for oxygen
 - less tissue release
 - reduced ionized calcium
 - may reduce cardiac contractility
- correct only the blood pH, not the intracellular pH
- increased production of CO₂
 - may not be eliminated in low output states
 - may impair lactate utilization, perpetuating elevated lactate levels

Metabolic acidosis

Metabolic acidosis : NaHCO₃

Dose calculation

- body weight in kg \times 0.2 \times base deficit = mEq NaHCO₃
- Severe metabolic acidosis
 - administered over several hours
 - with careful monitoring of serum Na⁺ concentration
 - bicarbonate is metabolized to CO₂
 - worsen respiratory acidosis
 - in patients with compromised pulmonary function
 - hyperventilate patient to lower PCO₂
 - in mechanically ventilated patients

Summary

Fluid

type, intravascular volume, redistribution

Summary

AKI

- optimization of hemodynamics, CRRT
- Hyperkalemia
 - manifestations, treatment
- Metabolic acidosis
 - etiology, effect

Thank you for your attention !

