Basic Knowledge for Catheter-based Intervention

인천세종병원 공준혁

Introduction

Vascular Specialists

Where

Motorized C-orm reduces stoff dependence and improve patient throughp

X-ray protection

X-ray badge

Thyoid X-ray collar lead apron X-ray goggle

Mobile X-ray barrier

X-ray barrier

Angiogram

• Routine Flurography

• DSA(digial subtraction angiography

• Roadmap

Positioning the patient (for a right-handed operator)

Access-site strategies for femoropopliteal artery intervention

Unit

• Inch

- Wire

• French

mm

- Sheath (inner), Catheter
- Balloon, Stent

- 1 mm = 0.039 inch = 3F
- 25.2mm = 1 inch

Classification of Catheter

Sheath(French): Inner wall

The Difference....

Avanti+

Brite Tip Sheath

Shuttle Sheath

- 90 cm long
- Kink resistant
- Soft SL tip design
- Hydrophilic coating
- 6 Fr sheath compatible with most carotid stent platforms

4 F sheath compatible With BTK intervention

Balkin Sheath

Cordis contralateral guding sheath

CFA Access

- Optimal access-
 - Above bifurcation
 - Below inferior epigastric artery

GUIDELINES AND STANDARDS

Guidelines for Performing Ultrasound Guided Vascular Cannulation: Recommendations of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists

 Christopher A. Troianos, MD, Gregg S. Hartman, MD, Kathryn E. Glas, MD, MBA, FASE, Nikolaos J. Skubas, MD, FASE, Robert T. Eberhardt, MD, Jennifer D. Walker, MD, and
Scott T. Reeves, MD, MBA, FASE, for the Councils on Intraoperative Echocardiography and Vascular Ultrasound of the American Society of Echocardiography, *Pittsburgh, Pennsylvania; Lebanon, New Hampshire; Atlanta, Georgia; New York, New York; Boston, Massachusetts; and Charleston, South Carolina*

(J Am Soc Echocardiogr 2011;24:1291-318.)

Keywords: Anatomy, Artery, Cannulation, Femoral, Guidelines, Internal jugular, Pediatric, Peripheral, Subclavian, Ultrasound, Vascular, Venous

Figure 15 The guide wire (arrow) is demonstrated entering the ight IJ vein, in SAX (A) and LAX (B) views.

Operation Schema

Micropuncture

Micropuncture Introducer Set, Silhouette™ Transitionless: Cook

- For placement of .035" or .038" inch diameter wire guides into the vascular system when a small 21 gage needle stick is desired.
- Transitionless Stiffened Cannula
- Smooth shaft to tip transition to eliminate hang-up on skin

Antegrade puncture Popliteal aretry, tibial artery puncture

Optimizing Image Quality

• Depth

• Gain

• Focus

Optimizing Image Quality

• Depth

• Gain

• Focus

Image Orientation

Figure 1. A 15-MHz i7 hockey stick probe.

In-plane view(longitudinal) vs Out-of-plane(transverse)

Sono-Guidance Puncture Animation

Retrograde CFA puncture

Antegrade SFA puncture

Simple PTA & Stent

Classification of Catheter

Catheter(French):Outer wall

• Diagnostic catheter:

flushing/selective

• Guiding catheter:

All Information on the Hub..

Top 5 Selective Catheters

- COBRA
- SIDEWINDER
- BERENSTEIN
- RENAL DOUBLE CURVE
- HEADHUNTER

Guiding Catheters

- From 6F to 10F
- For safe balloon and stent delivery
- Designed to be introduced in vessel ostium
- For back up support
- Mainly in renal arteries

Peripheral Guiding Catheters

Cordis a gefinier - gefinier company ENDOVASCULAR

Renal Double Curve

Vista britetip Peripheral Guiding Catheter

Vista britetip Peripheral Guiding Catheter

Hockey Stick

Guidewire Functions

- First device IN, last device OUT !!!
- Insert sheath introducers.
- Straighten the vessel to help advance the catheter or interventional device.
- Facilitate the exchange of catheters.
- Guide and help place a catheter or interventional device.
- Access and cross the lesion site.

Wire Diameters

• Always measured in thousandths of an inch.

- <u>.014" for Rx systems (Originally Cardiology)</u>
- <u>.018</u>" for crossing tight stenose
- <u>.035" for support for delivering devices</u>
- .038" for support for delivering devices

Wire(inch): Outer wall

- Diameter:
- Coating:
- Stiffness:
- Tip shape:
- 0.014/0.018/0.035/0.038 hydrophilic/teflon/steel standard/stiff/superstiff

Hydrophilic Coating

BENEFITS:

Facilitate device trackability

Cross tight lesions

Hydrophilic Wires

- Angiodynamics: AquaLiner
- Angiotech: CanaliZer
- Asahi: Regalia 1.0XS
- Boston Scientific: Transend Steerable, Fathom-14,16 Steerable, Zipwire
- Cook: HiWire, Roadrunner
- Cordis: Aquatrack
- Medtronic: Cougar, Zinger, Thunder, Persuader 3/6/9

- Merit: H2O
- Microvention: Headliner, Traxcess
- Micrus: Watusi
- St Jude: Hydrosteer
- Terumo: Glidewire,
 <u>Glidewire Gold</u> J, straight
- Vascular solutions: VSI

Coiled Stainless Steel Wires

- Abbott: Hi-Torque Supra Core/ Steelcore/ Spartacore
- Angiodynamics: PTFEcoated
- B.Braun: Guidewires
- Boston Scientific: Amplatz Super Stiff, Meier, Starter, Schneider
- Cardiovascular Systems: Viperwire
- Cordis: Emerald
- ev3/Invatec: Nitrex, Babywire

- Cook: Safe-T-J, Bentson, Newton, Rosen, Amplatz Extra Stiff/Ultra Stiff/
 - Tapered, Lunderquist, Double flexible tip, Tefcor
- Merit: InQwire
 - Covidien (Tyco/Mallinckrodt): Wholey Hi-Torque, TAD, Flex Hi-Torque
- St Jude: GuideRight
- Vascular Solutions: VSI, Jiffy, VSI

SHAFT STIFFNESS

SHAFT STIFFNESS

Function of core size

Larger core => stiffer shaft

Create "room" for larger core with flat-wire coil

Stiff shaft provides support for device delivery

Balloon(mm): Outer wall

Semi-compliant vs Non-Compliant

Radial Force : Balloon Compliance

Compliance is the ability of a balloon to grow with pressure.

- <u>Semi-compliant</u> balloons grow and conform to the areas of least resistance as pressure is increased
 - Semi-compliant balloon actually grows more where it is not constricted, thus having a higher potential for causing edge dissections.
 - \uparrow pressure = \uparrow size
- <u>Non-compliant</u> balloons grow and conform less as pressure is increased
 - Little change in volume with incremental
 - increases in pressure. More force is exerted against a lesion at a given inflation pressure than SC balloons, including stent delivery balloons.
 - \uparrow pressure = \uparrow rigidity

Semi-Compliant

"Dog bone" effect

Non-Compliant

Romagnoli et al JACC 2008

Compliant vs Non-Compliant

(a) A compliant balloon tends to be oversized at the edges, with less dilatati on at the obstructive segment of the lesion ('dog-boning')(b) A noncompliant balloon gives a predictable amount of pressure at the les ion without uncontrolled radial and longitudinal growth

IN.PACT DCB with FreePac Coating

IN.PACT[™]

Medtronic-Invatec DEB
 balloon line

FreePac™

- Proprietary hydrophilic coating formulation
 - Urea facilitates improved drug transfer efficiency from balloon
 - Urea facilitates
 Paclitaxel absorption
 into the vessel wall

DEB Coating Overview

DEB Desired Coating Characteristics

Desired Characteristic	Why Important
Durability	Ensure therapeutic dose of drug reaches lesion
Uniformity	Ensure uniform drug dose applied to vessel wall
Drug Transfer Efficiency	Fast release to vessel wall
Safety	Minimize embolic particulateMinimize vessel wall inflammation

Temporary Occlusion/Vascular Prostheses Post Dilatation Balloons

- Coda Balloon Catheter (Cook)
- RELIANT® Stent Graft Balloon Catheter (Medtronic)
- Berenstein Large Balloon Catheter
- Equalizer Balloon Scientific)

Stent(mm):Outer wall

Balloon expandable

Advantages :

- Radiopacity
- Radial force
- Precise delivery

Disadvantages:

- Flexibility
- Trackability

Indications:

 Short, calcified stenoses

Self expandable

Advantages :

- Flexibility
- Trackability

Disadvantages :

- Radiopacity (advantage of distal radio-opaque markers)
- Radial force

Indications :

- Long lesions, tortuous arteries.

Open-Cell vs Closed-cell Stent

Open-Cell vs Closed-cell Stent

Stent Design and Prototype	No. 144
Closed-cell stents	
Wallstent (Boston Scientific, Natick, MA),	31
Niti-S stent (Taewoong Med, Seoul, Korea)	113
Open-cell stents	257
Luminexx (Bard Peripheral, Murray Hill, NJ)	27
SMART stent (Cordis, Miami lakes, FL)	125
Zilver (Cook, Bloomington, IN)	105

Closed-cell stent

Stent Complications

Disease Based Devices

Endo for PAOD

New technologies for lower extremity revascularization

- Drugs
- Subintimal Angioplasty
- Bare Stents
- Covered stents
- Drug eluting Stents
- Drug eluting balloon
- Bioabsorbable Stents
- Brachytherapy
- Cryoplasty
- Cutting balloon
- Photodynamic therapy
- Debulking -artherectomy

Directional Atherctomy catheter

A catheter equipped with a bladed tip is guided to the blockage. A balloon is inflated to push the blade toward the plaque to cut it away. Pieces of the plaque are stored within a chamber and removed when the catheter is withdrawn. © 2004 · Duplication not permitted

Rotational Atherectomy catheter

TEVAR

Descending Thoracic Aortic Aneurysm Ruptured DTA Thoracic Aortic Dissection Aortic Ulcers/Mobile Atheroma Traumatic Aortic Transection Aorto Bronchial Fistulas Other Aortic Pathology

IVI Y ()

Aortofix

Zenith

EVAR

T-Branch

Fig 1. Cook Zenith t-Branch. A, Picture of the t-Branch. B, Intraoperative image of the t-Branch before deployment. Radiopaque markers: *CT*, Celiac trunk; *LR*, left renal artery; *RR*, right renal artery; *SMA*, superior mesenteric artery. C, Intraoperative image of the t-Branch after deployment. D, Postoperative computed tomography angiography of the t-Branch, volume rendering.

Carotid Artery Stenting

Endo of DVT

Endo for AVF

Catheter Management

Permcath

Long term cath

Chemoport

PICC

Varicose vein

Summary

Vascular Specialists

수고하셨습니다.

joonhyukkong@empas.com Youtube: " joonhyukkong"

Reentry Catheter

New technologies for lower extremity revascularization

- Drugs
- Subintimal Angioplasty
- Bare Stents
- Covered stents
- Drug eluting Stents
- Drug eluting balloon
- Bioabsorbable Stents
- Brachytherapy
- Cryoplasty
- Cutting balloon
- Photodynamic therapy
- Debulking -artherectomy

Torque Device

Frontrunner XP Peripheral CTO

- .039" distal tip size
- 2.3mm jaw opening
- 90 and 120cm lengths
- Responsive torque
- Shapeable distal tip
- Blunt micro-dissection technology

Frontrunner XP Peripheral CTO

Outback and Pioneer Catheter

Enables rapid, safe, and reproducible re-entry of a guidewire from the subintimal space back into the true lumen of a peripheral vessel

Distal Housing & Nosecone Assembly - Detail A

Crossover

Pigtail & Outback

Atherectomy

New technologies for lower extremity revascularization

- Drugs
- Subintimal Angioplasty
- Bare Stents
- Covered stents
- Drug eluting Stents
- Drug eluting balloon
- Bioabsorbable Stents
- Brachytherapy
- Cryoplasty
- Cutting balloon
- Photodynamic therapy
- Debulking -artherectomy

Types of Atherectomy

- Directional Atherectomy
- Rotational Atherectomy
- Transluminal Extraction Atherectomy

Directional Atherctomy catheter

A catheter equipped with a bladed tip is guided to the blockage. A balloon is inflated to push the blade toward the plaque to cut it away. Pieces of the plaque are stored within a chamber and removed when the catheter is withdrawn. © 2004 · Duplication not permitted

Directional Athrectomy

Rotational Atherectomy catheter

Transluminal Extraction Atherectomy

- Usually used for bypass graft arteries
- Tiny rotating blade and a hollow tube
- Particles are sucked into a tube through a

vacuum

The bladed catheter is guided to the blockage. Spinning blades slice away the plaque, and the pieces are sucked out of the body through a vacuum tube.

Risk and Benefits

- Risks
 - Heart attack
 - Emergency bypass surgery
 - Coronary artery perforation

- Benefits
 - Open blocked arteries
 - Improve blood flow to heart
 - Relieves symptoms
 - Improves exercise duration
 - Stops or prevent heart attacks

TurboHawak

JetStream

Jetstream

