Aortic arch obstruction

Kwang Ho Choi, M.D. Department of Thoracic and Cardiovascular Surgery Pusan National University Yangsan Hospital

Development of the aortic arch and branches

Development of the aortic arch and branches

Development of the aortic arch and branches

Development of the aortic arch and branches

Coarctation of Aorta (CoA)

Coarctation of Aorta

Definition

- Congenital narrowing of the descending thoracic aorta
- Usually occurring just distal to the LSCA
- Site of insertion of the ductus arteriosus (ligamentum arteriosum)

Coarctation of Aorta

Gittenberger-De Groot, A.C. Bartelings, M.M. Deruiter, M.C. Poelmann, R.E. Basics of Cardiac Development for the Understanding of Congenital Heart Malformations. Pediatric Research. 2005; 57 (2): 169-176.

Prevalence

- 0.2 ~ 0.6 / 1000 live births (8th)
- 5 ~ 8 % of cases of congenital heart disease
- Associated anomaly
 - Patent ductus arteriosus, bicuspid aortic valve, ventricular septal defect, mitral valve abnormalities
- Clinical presentation
 - From cardiovascular collapse in neonate after ductal closure to asymptomatic hypertension in adult

Embryology and anatomy

- Morgagni in 1760 : localized constriction of descending aorta
- Bonnet in 1903
 - Infantile vs. adult type
 - Key differences : patent of

ductus arteriosus

Critical factors

- Patent of ductus arteriosus
- Size of transverse arch
- Degree of narrowing at the coarctation site

- Three group of classification system
 - I : patients with isolated coarctation
 - II : patients with coarctation and ventricular septal defect
 - III : patients with coarctation and complex intracardiac anomaly

3 components of aortic arch

Aortic arch hypoplasia

- Arch / Aao diameter < 50%
- Arch < Bwt. (Kg) + 1
- Z-score < -2

Two theories of CoA (I)

➤ Flow theory

- Hypothesis that blood flow through the chambers and great arteries determines the size
- If L-R shunt in fetus, left heart blood flow decreased -> aortic isthmus decreased
- Lack of fetal blood flow across the aortic isthmus
- VSD, Bicuspid aortic valve, congenital aortic stenosis, congenital mitral stenosis
- Corroborating evidence : reduced right heart output (TOF, PS, TA..) lesions are almost never associated CoA
- no obvious intracardiac defects ??

Two theories of CoA (II)

- Ductal sling theory
 - Skoda (1855) : abnormal extension of contractile ductal tissue into the aorta
 - Microscopic exam : obstructing shelf was composed

of cells similar to that found in ductus arteriosus

- Contraction and fibrosis of "ductal sling "at the time of ductal closure
 - \rightarrow constriction of the aorta and coarctation

Pathophysiology, Clinical presentation

- Critical Neonatal Coarctation
 - Severe juxtaductal constriction of aorta → profound circulatory collapse in first month of life
 - Closure of ductus → restrict blood flow to lower body → absence of femoral pulses
 - Pale, poorly perfused, tachypnea, pulmonary edema
 - Metabolic acidosis \rightarrow renal failure, hepatic failure, NEC, seizure, death

Pathophysiology, Clinical presentation

- Infant Coarctation
 - Slowly closure of ductus \rightarrow collateral vessel develop
 - Tachypnea, failure to thrive
 - Irritability, sweating, difficulty with feeding

Pathophysiology, Clinical presentation

Older Child and Adult

- Uncommon for mild or moderate coarctation with undiagnosed
- History of exercise intolerance, fatigue of lower extremities
- Excellent collateral vessel development \rightarrow could be asymptomatic
- High blood pressure in upper extremities
- Diminished pulse pressure of femoral pulse
- Rib notching on chest x-ray

Diagnostic studies

- Echocardiography
 - Two dimensional echocardiography with Doppler
 - Lack of pulsatile flow in the descending aorta
 - Anatomic coarctation site
 - Size of transverse arch
 - Other intracardiac anomaly

Chest X-ray

- Rib notching
- Classic 3 sign : dilatation of LSCA, narrowing

CoA, post dilatation of descending aorta

- Angiogarphy
- CT scan
- ≻ MRI

Medical management

- Critical neonatal coarctation
 - PGE1 infusion
 - Optimize the ratio of pulmonary to systemic resistance
 - Reducing FiO2 to 21%
 - pCO2 above 45mmHg
 - Optimize cardiac output : dopamine
 - Enteral feeding : careful watch!!

Surgical indication

- Unresponsive to medical therapy
- Hypertension > 2SD
- ➢ Diameter loss of 50%
- Blood pressure gradient > 20 ~ 30mmHg
- ➤ CoA with CHF at any age

General consideration for Surgical Tx.

- > Thoracotomy vs. Sternotomy
 - Arch hypoplasia
 - Associated cardiac anomaly
 - One stage vs. staged

General consideration for Surgical Tx.

- Left posterolateral thoracotomy incision via 3rd or 4th ICS
- Median sternotomy for patients with intracardiac anomaly
- Arterial pressure monitoring : right radial artery
- NIRS
- Lymphatics channels : preserved or ligated and divided
- Vagus nerve and recurrent laryngeal nerve preservation
- Large collateral intercostal vessels : mobilized and encircled with vessel loops or ligated and divided for fully mobilize

End-to-End anastomosis

Prosthetic interposition graft

Prosthetic patch aortoplasty

Subclavian flap aortoplasty

Extended End-to-End anastomosis

Reverse subclavian flap aortoplasty

End-to-side anastomosis

Extra-anatomic bypass graft

Median sternotomy

- CoA with intracardiac defects
 - Staged : CoA repair with PA banding first

Repair of intra-cardiac defect second

- Simultaneous repair
 - Cardiopulmonary bypass with hypothermia
 - Total circulatory arrest vs. low-flow perfusion
 - Myocardial perfusion during aortic arch repair

DHCA vs. Regional perfusion

	DHCA	SCP
Advantage	Clear operation field More accurate correction esp. in small babies	Potentially neuroprotective
Disadvantage	Poor neurodevelopmental outcome \rightarrow Safe duration of circulatory arrest ???	Crowded operative field Technically demanding Lack of randomized trial

Brain protection during arch repair

Regional cerebral perfusion

- Via innominate artery \rightarrow graft, direct
- Flow rate : 50mL/Kg
- Right radial artery pressure > 30mmHg
- Perfusate temperature : 24 °C (at rectal temperature 25 °C)

Author	Year	Pts	Flow ^a	Temp °C	Hema
ASCP					
Asou	1996	14	50	22	
McElhinney	1997	7	30	18	
Pigula	2001	15	20	18	
Tchervenkov	2001	18	18-76	18	
Andropoulos	2003	34	63	17-22	
Hoffman	2004	9	30-70	18-20	25
Dent	2006	22	30	18	28
Amir	2005		20-40	22-25	25
SCMP					
Kostelka	2004	24	30-40	18-28	>
Lim	2002	48	50 - 100	18	

Table 5. Antegrade Selective Cerebral Perfusion and Selective Cerebral and Myocardial Perfusion: Management Protocols Reported

^a Flow rates are mL (kg · min).

ASCP = antegrade selective cerebral perfusion; SCMP = selective cerebral and myocardial perfusion.

Ann Thorac Surg 2006:82:2233-9

Complications

Table 14.6 Potential complications of surgery.

Recoarctation Paradoxical hypertension Paraplegia Recurrent laryngeal nerve injury Left arm ischemia Hemorrhage Aneurysm formation Chylothorax Horner's syndrome Phrenic nerve injury Cerebral-vascular accident

Paradoxical postoperative hypertension

Two hypertensive responses

1) Occurs immediately and subsides within 24 hours (systolic)

• Release of the stretch on the baroreceptors in the carotid artery

 \rightarrow markedly increased in sympathetic activity

2) 48~72hr, 1/3 of first phase hypertension (diastolic)

- Elevated renin and angiotensin
- Beta blocker and Nitroglycerine, Nitroprusside

Paraplegia

1) ACC time as short as possible

2) Careful technical anastomosis so reapplication of clamps is not necessary

- 3) Moderate hypothermia
- 4) High proximal blood pressure
- 5) No acidosis
- 6) Adequate distal mean blood pressure (> 45mmHg)

Aneurysm formation

Prosthetic patch angioplasty

Chylothorax

> Near the subclavian artery

Conservative TX : NPO, Somatostatin, MCT milk

Nerve injury

Left main bronchus compression

- Longer course and smaller caliber compared to right
- Geometric change after coarctoplasty
- Tension on anastomosis site

To avoid airway problem

- Extensive dissection arch vessels and descending aorta
- Tension free anastomosis
- > Arch repair using autologous MPA patch

Airway problem management

> Aortopexy

RPA anterior translocation

Lee et al. ATS 2016

Long term follow-up

> Hypertension : age at operation

- Exclude recurrent coarctation
- Subclavian flap repair > End-to-end anastomosis (Kenny et al.)
- > Aneurysm : synthetic patch aortoplasty
 - Mismatch in compliance between patch and native aortic wall
 - cf.) subclavian flap aortoplasty : remained ductal tissue
 - Balloon aortoplasty

Recoarctation

Table 14.2 Results of resection with end-to-end anastomosis.

Table 14.4 Results of subclavian flap aortoplasty. (NS, not specified.)

Table 14.5 Results of resection with "extended" end-to-end anastomosis.

Author	Age	Year	Patients	Mortality	Recoarctation	Author	Age	Year	Patients	Mortality	Recoarctation
Williams [66] Cobanoglu [67] Körfer [68]	<1 yr <3 mo <4 mo	1980 1985 1985	176 55 55	66 (38%) 16 (29%) 2 (4%)	39 (33%) 3 (8%) 3 (6%)	Metzdorff [106] Ziemer [69] Ehrhardt [108] Milliken [97]	<2 mo <1 mo <1 mo <1 mo	1985 1986 1989 1990	60 70 45 123	11 (18%) 8 (11.4%) 14 (31%) 11 (9%)	10 (17%) 9 (15%) 7 (23%) 20 (16%)
Ziemer [69] Brouwer [70] Kappetein [71] Van Heurn [13] Quaegebeur [72] ^b	<1 mo <2 yr <3 yr <3 mo <1 mo	1986 1991 1994 1994 1994	24 32 48 42 139	8 (33%) 2 (6%) 5 (10%) 5 (10%) 20 (14%)	4 (25%) 4 (13%) 41 (86%) ^a 11 (30%) 6 (4%)	Van Heurn [13] Quaegebeur [72] ^a Allen [93] Jahangiri [109] Pandey [105] Barreiro [110]	<3 mo <1 mo <3 mo <1 yr < 4 yr <1 yr	1994 1994 2000 2000 2006 2007	15 112 53 185 399 119	1 (7%) 9 (8%) 0 6 (3%) 51 (12.8%) 5 (4%)	6 (42%) 12 (12%) 2 (4%) 11 (6%) 61 (15.3%) 12 (11%)
TOTALS			571	124 (21%)	111 (19%)	TOTALS			1181	116 (10%)	150 (13%)

Table 14.3 Results of patch aortoplasty. (NS, not specified; PTFE, polytetrafluoroethylene,)

Author	Age	Year	Patients	Operative mortality	Recoarctation	Aneurysm	Patch
ree [84]	<l td="" yr<=""><td>1984</td><td>100</td><td>0</td><td>10 (12%)</td><td>0</td><td>PTFE</td></l>	1984	100	0	10 (12%)	0	PTFE
Clarkson [82]	>15 yr	1985	38	NS	6 (16%)	5 (13%)	Dacron
Hehrlein [80]	2 d–64 yr	1986	317	16 (5%)	4 (1.3%)	18 (6%)	Dacron
Del Nido [85]	3 d–32 yr	1986	63	1(2%)	8 (13%)	3 (5%)	Dacron
Ungerleider [86]	NS	1991	54	0	2 (5%)	0	PTFE
Backer [87]	5.1 yr (mean)	1994	125	4 (3%)	10 (8%)	0	PTFE
Walhout [81]	1.8 yr (mean)	2003	118	4 (3%)	30 (25%)	8 (7%)	PTFE
fotals			815	25 (3%)	70 (9%)	34 (4%)	

Author	Age	Year	Patients	Operative mortality	Recoarctation
Lansman [9]	6 mo	1986	17	1 (6%)	2 (12%)
Vouhé [19]	3 mo	1988	80	21 (26%)	6 (10%)
Zannini [112]	3 mo	1993	21	4 (19%)	4 (23%)
Van Heurn [13]	3 mo	1994	77	5 (6%)	8 (11%)
Kappetein [71]	3 yr	1994	26	4 (15%)	0%
Conte [21]	<1 mo	1995	307	23 (7%)	24 (9%)
Van Son [116]	<1 mo	1997	25	0	1 (4%)
Wood [118]	<1 yr	2004	181	1	4 (2.2%)
Wright [117]	<1 yr	2005	83	2 (2%)	4 (6%)
Thomson [119]	<1 yr	2006	191	9 (5%)	7 (4.2%)
Kaushal [53]	1 yr	2009	201	4 (2%)	8 (4%)
TOTALS			1209	74 (6%)	68 (6%)

Prevention of recoarctation

- > Operative procedure
 - Successfully address transverse arch hypoplasia
 - Resection of all ductal tissue
 - Prevention of residual circumferential scarring at anastomosis site
 - Tension free anastomosis

Interrupted Aortic Arch (IAA)

IAA

≻ Def.

- Complete luminal and anatomic discontinuity between two segments of the aortic arch
- Fibrous strand connecting two widely separated ends are also included IAA
- ➤ 1% of CHD
- > 80% of die within 1^{st} month without Tx.

Anatomy

Pathophysiology

- Distal blood flow dependent on patent ductus arteriosus
- > Spontaneous ductal closure \rightarrow systemic hypoperfusion, metabolic acidosis, end-organ-failure
- > Upper ext. saturation > lower ext. saturation
- Severe pulmonary HTN in patients with VSD, ASD

Associated condition

- Commonly combined with LVOTO, bicuspid AV
- > LVOTO
 - Posterior deviation of infundibular septum
 - Small aortic annulus
- ≻ VSD : 70%
- Truncus arteriosus : 10%
- ➤ TGA, DORV : 4~5%
- > AP window : 3%
- DiGeorge syndrome, Berry syndrome

Medical treatment

➤ PGE1

- CHF management
- Mechanical ventilator if needed
- ➢ iCa level check

Surgical treatment

Indication

- Urgent operation is advisable
- > Technique
 - Direct anastomosis
 - Resection and end to end anastomosis
 - Extended resection and end to end anastomosis
 - Interposition of graft
- One stage repair

LSA

Results

- > Mortality
- Early death
- > Acute or subacute HF with or without multisystem failure
- ➢ One stage repair < 10%</p>
- Techniques other than direct anastomosis are associated with higher risk of reintervention

Complication

➤ Early

- Bleeding : inadequate mobilization, friability of tissue
- Restenosis : ductal tissue
- Left recurrent laryngeal and phrenic nerve injury
- Paraplegia
- Compressed left main bronchus
- ➤ Late
 - Pressure gradient across arch : balloon dilatation
 - LVOTO

